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ABSTRACT

Most commercial and military systems subject to failure have

an initial period of growth With uncertain time dependent growth

rate. Prediction of spare parts demand and service personnel demand

is correspondingly uncertain and existant statistical tools are

inadequate for the adaptive ad hoc planning needed.

In our model, systems subject to failure enter into use at

the epochs of a time-inhomogeneous Poisson process of rate X(t).

A component or module of each system in use has constant failure

rate p and generates demand for parts and service. The distribution

of the cumulative failures N(t) is obtained. Numerical methods

and the asymptotic distribution for large t are described.
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In Section 2, the case of constant Poisson build up where X(t) X

is treated. The cumulative demand distribution at time t is obtained

through generating function methods by treating the population of systems

in use and the cumulative demand as a bivariate Markov chain. An

algorithm for finding the distribution numerically when the cumulative

demand at time t is modest is displayed in Section 3. A graphical

display shows growing normality for large demand. In Section'4, time

dependent entry rate X(t) is treated, and the distribution of cumula-

tive demand N(t) is found. It is shown that this demand is both a

compound Poisson distribution and a mixture of Poisson distributions,

and that the mean and variance of the demand at time t have simple useful

forms. Specifically it is shown that

t
E[N(t)] = ij f C)(t-)dT (1.1)

0

and that

Var[N(t)] = V2 f ,))(t-.) 2 dT + E[N(t)]. (1.2)
0

The asymptotic character of the distribution of demand is exhibited in

Section 5, and conditions under which the cumulative demand is normal

or Poisson are described. Practical use of the tools developed in this

paper is discussed in the final section.

The paper is self-contained. Only a knowledge of probability theory,

Poisson processes, the central limit theorem and elementary stochastic

process tools as found, e.g., in Ross (1970) is required.
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2. Replacement Demand Associated with Constant Poisson Build Up

Consider a random counting process M(t) for "primary" events (e.g.,

aircraft entering service). We suppose throughout this section that all

primary units produced are still functioning at time t. Each primary event

generates subsequent secondary Poisson events (e.g., demands for service

or part replacement) with rate p. If T. is the time of the i-th primary1

event and if L(t - Ti) is the random number of secondary events up to time

t, initiated by the primary event at T then the total number N(t) of

events is

N(t) = Mt L(t - T i)  (2.1)
i=l1

with the usual convention that an empty sum has the value 0. We are inter-

ested in the distribution of N(t) when M(0) - 0.

We first consider the case for which the primary counting process

M(t) is Poisson with rate X. To find the distribution of N(t) for this

case one can use bivariate Markov processes and bivariate generating func-

tions. Let [M(t), N(t)] be the bivariate Markov process on the set of

states {(m,n); 0 s m, 0 s n) with transition rates

V (m,n) (m~l ,n)

and (2.2)

V (m,n)(m,n~l) Um

Let Pm,n(t) w P[M(t) a m, N(t) u nIM(O) * 0, N(O) a 0] and let us denote by

g(u,v,t) aI Pm,n(t)u v (2.3)
all u.nmn
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the bivariate probability generating function of [M(t), N(t)].

Since

d p mCnt)

dt (A+mw)pm Ct) + )Lpm ~(t)
(2.4)

+ Mm~n (t), for n,m L> 0

one finds

ag(u-,v,t) -XIUgUVt J
at a)(-~~uvt u g(u,v,t)

au

If g(u,v,t) = exp{Q(u,v,t)) then clearly, for g(u,%v,O) 1, one has

DQ(u,V,t) =- 4(l-u) - aulvLQuvt
i~u~-v).-- Qu~v~) .(2.6a)

Q (u ".,0) = 0 (2.6b)

If one seeks a solution linear in u, i.e.,

Q(u,v,t) =A~t) + B(v,t)u (2.7)

then (2.6) becomes

d A~t) u a B(V,t) * -(l-U) - i(l-v)u B(v't) . (2.8)t at

One then must have

d
-A(t) *)

jB(v,t) A - dl-v)B(V,t)
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One thus obtains a particular solution of (2.6) with A(O) = 5(0) = 0:

A(t) = -At

and

=' 1 -i- ttCl-v)
B(t) = Xt[ tl-v)

Hence

u e-iUt( l-v)(29
g(u,v,t) = exp{-At[l t (I - e)M (2.9)

lit (l-v)

A simple argument demonstrates that (2.6) has only one solution, which we

have found.

The probability generating function for N(t) is then

Pt (v) E[v N (t)] = g(1,v,t) (2.10)

which becomes

e-1t (l-v)
P (v) exp{-Xt[l - 1 (2tut (l-v) ])2.1

This is the generating function of a compound Poisson process, whose

increments, say Vt . are simply related to a secondary Poisson distribution.

Specifically, one can write (2.11) as

Pt(v) exp{-Nt[1 - at(v) ]) (2.12)

where
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Vt  e-Vt (-v)

a (v) = E[v ] - t -v) (2.13)

Qt(v) is then the generating function of the compounding distribution of

Vt. It is easily seen that at Cv) corresponds to the distribution

P[V t = n] 1 (pt) r  
- t (2.14)

r=n+ r

The mean and the variance may be obtained directly from (2.11) and are

E[N(t)) = 2 (2.15)

Var[N(t)] = Xt[ l 2 (2.16)

Note that the variance-mean ratio is

Var[N(t)] - 2(2.17)
E[N(t)] 3 ijt

which is always larger than one.

We note that the generating function (2.11) is similar in character

to that of a generating function obtained by Berg (1981).
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3. Evaluation of the Distribution

We have just shown that the distribution of N(t) is that of a com-

pound Poisson distribution with the underlying Poisson process having

rate A, and with the compounding variable Vt having the distribution (2.14).

Thus,

-At (At) k ak~t 3

Pn (t) = P{N(t) = n) = e (t (3.1)
k=O

ak(t) is the n-th term of the k-fold convolution of V with itself.
whereont

In other words,

k
Ln(t) = P{V = n} , (3.2)

where Vt denotes the sum of k independent random variables, each having
*k

distribution (2.14). The distribution of Vt  can be obtained easily by

convolving iteratively the distribution (2.14).

One can obtain pn (t) explicitly from (2.11) for small values of n

by differentiation. One finds that

Po(t) = exp(-Xt . - (I - e Ut)) (3.3)

Pl(t) = v vv) Po(t) * e[1 -

- Ut e'lit] (3.4)

and that

1 -Ut Ut
P2 (t) a 2 po(t) [1 - e - uteUt ] 2

P2 av 7Pv)I-0 U

* 2(1 - elt) - 2Utelt - 2ut)e Ut (3.5)
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For larger values of n, say n Z 3, the probabilities pn t) can be obtained

numerically. The plots of the standardized survival functions, i.e., of

pjN(t) - E[N(t)] > t)
Raar [N(t) T

for various values of parameters B = At and A =_ t on normal probability

paper are shown in Figure 1. The diagonal straight line in Figure 1 repre-

sents the survival function of the standard normal distribution.

From the plots, it can be seen that, for about A 2 20 and B ? 10,

the central part of the distribution can be well approximated by the

standard normal. Note, that the left tail of the distribution of N(t)

is heavier than normal so that the normal approximation underestimates

the percentage points of the N(t) distribution. On the other hand, the

right side of N(t) is lighter and the mass point at the extreme left

represents the probability of having no replacements needed. Theoret-

ical justification of the normality will be given in Section 5.
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4. The Distribution of the Cumulative Demand N(t) for More General

Primary Input Streams

The process described in Section 2 can be generalized to better model

real world situations.

Theorem 4.1. If the sequence of primary events is any point process and

if the number of secondary events generated by primary events is Poisson,

then N(t) is a mixture of Poisson distributions, i.e.,

Pt(v) = E[vN(t) e el-V)dGt(e) (4.1)

where Gt () is a c.d.f.

Proof: Let w = (Tl(W)JT 2 ()...) be a sample sequence of primary epochs.

Then the conditional probability generating function is

-a t (u) (1-\')

Pt(vi) 
= e

and a~ t () is a Poisson parameter. Hence

Pt(V) -- f ot(PQ dw ,

where a t (dw) is a measure on the space of sample sequences. The theorem

then follows. 0

Example 4.2. We will verify the Poisson mixture property for the Poisson

input case of Section 2. For notational brevity, let At B and ut A.

When the primary stream is Poisson, (2.11) may be written as

-A (l-v)p (v). exp{-B[l - 1 e• l

t A(l-v) ]



Letting 1-v z s, we get

f e- e G6 = exp(-Bfl As1-

But this is a Laplace transform of a compound Poisson process obtained

from a uniform distribution over (0,A). Hence the mixing distribution

G(e) is that compound Poisson distribution.

Remark 4.3. The result of Theorem 4.1 is not altered by phase out of

primary sources due to failure, obsolescence, or random utilizations,

as we see next.

For most industrial applications, the primary production will also

vary with time due to initial buildup and ultimate phaseout. Not only

will primary units (e.g., aircraft) disappear because of catastrophic

failure or obsolescence but the primary units available may have random

utilization arising from economic fluctuations, long downtimes, etc.

For such a more general input streams let ?4(t) be the total number

of primary units in operation at time t, and let N(t) be the cumulative

number of replacement parts (service procedures) required up to time t.

Let m W(t) be a realization of the input process. For each such realiza-

tion let N W t) be the random variable associated with that primary

realization. If the secondary events are Poisson with rate u~, then

N W(t) has Poisson distribution with parameter

I W(t) - V mw(y)dy .(4.2)

Equation (4.2) defines a random process 1(t) of basic interest. Since



-12-

1() Ut) f 1~~d (4. 2a)
0

we see that I(t) is dimensionless and that Cut) 1I(t) is the average

population up to time t. Moreover,

P(v) = E[v N~)I = f eI (tW -)C (dw)

= Efe- 1(t) (1-v)I (4.3)

Comparing (4.1) and (4.3) we see that

The following results are a direct consequence of Theorem 4.1.

t

Theorem 4.4. (a) E[N(t)] = Eflct)] =uf E[M(y)]dy (4.5)
0

(b) E[N(t)(N(t)-l)] = E(l 2Ct)] (4.6)

(c) Var[N~t)] a Var[1(t)] + E[I~t)] .(4.7)

Note that if 1(t) is non-random with E[l(t)] '_ (t), then we have

E~ ~)aE[e- Ct) (1-v)~ ) z e t)(IV) V (4.8)

and thus N~t) is a nonhomogeneous Poisson process with rate E(t), i.e.,

C t) - [,(,),n e-tt) . -n 0,1,29,... (4.9)

Example 4.5. Suppose that the primary process is deterministic and the

interarrival times between primary events equal T In this case



m (y) a k , if kT < y < (k 1)T

for k u 0,1,2,..., and

t
1(t) 1 Ct) •= f m (y)dy = vK[t - (K*I)-] , (4.10)

0

where K = [t/T*].

Theorem 4.6. If the primary production stream is a nonhomogeneous Poisson

process M(t) with rate X(t) continuous in t then the number of secondary

events N(t) has a compound Poisson distribution.

Proof: We have seen in (4.2) that N(t) is a Poisson mixture K with1(t)

random mixing parameter

t
Iet) - v f Mi s)di = Sct) e hr4.11)

0
t

where S(t) = M(-td-r is a stochastic integral. One then has to first order

0

in dr,

E[e-sdM(t)] e-A('r)d-r[l-e ]

and

Otv) a E[vN (t) e'r(-lv)lj dF (t)(T) f Sct)C(v1"v)) (4.12)

where

4S(t) (s) a E[e- s $ C )]
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t t
Hence, S(t) - f dy f dM(-) - f (t-T)dM() for every sample path. For

0 0 0
any Riemann sequence of partitions P. of the interval [0,T) whose

maximum interval 6. a max 6 k goes to zero
k

S(t) a lir I (t-k)[M(k l) - MCk) ]

and

S(t) (s)= rlir H exp{-X(ik) 6 jkl-e 1k
-jO0k

- lrn exp{.. ( )Ck ) 6 jk I-e (t-T k)s
t (-Ct-k

- exp{-f X(k)-e k IdT]
0

aexp{-A(t)[1 - f e- )T) dTj) (4.13)
0

t
where A~t) *f (T)dT. Thus (4.12) becomes

0

0

a exp{-A(t)[l-a sv)]). (4.14)

This is the generating function of a compound Poisson distribution, with

t

where t)(v f e4{AR dThu (4.15)
0

Remark 4.7. For the homogeneous Poisson case with d(t) au (4I.)

reduces to at(v) of (2.13).
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5. Asymptotic Normality and Asymptotic Poisson Character of the

Cumulative Demand

Consider first the time homogeneous process of Section 2. When

the parameters A a Ut and B = Xt are small, one expects that the distri-

bution of N(t) will be Poisson. One also expects that when A and B

are large the distribution of N(t) will be close to the normal distri-

bution.

Let LA,B be the number of secondary events N(t) with parameters

A and B let K be a Poisson r.v. with parameter y; let N 2 be a normal
2 ,

r.v. with mean u and variance c2.

The Poisson character of LA,B for A and B small is described in

the following theorem.

Theorem 5.1. For fixed a > 0 L d. K as A 0 .
A,cu/A a/2asA-0.

Proof: The generating function for LAa/A is

- 1 - •A(lv)
ot(v) = exp{-(a/A)[l - A(l-v)

As A - 0+ we find from L'Hospital rule that lim pt(v) a exp{- (l-v))
A-O+ t1

which is the generating fumction of K01 2.

It is well known that K is close to normal when y is large.

Theorem 5.1 then say that the distribution will look Poisson when

E[N(t)] - ut 2/2 is modest and Xt is small. The asymptotic normality

for the time homogeneous case will be treated in the following discussion

for the nonhomogeneous case.

From (4.2) and (4.11) we know that N(t) - K S(t), where S(t) *
t

fo M(T)dt, with M(-) being the total number of primary events up to

time T generated by a nonhomogeneous Poisson process. Differentiating
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(4.13) with respect to s at s a 0 we find

t
St z E[S(t)] u f )(T)(t-T)dT = X(t).t . (5.1)

0

Differentiating twice one finds that

EIS2 (t)) = X(t)*t 2 + {X(t)*t)2. (5.2)

Hence,

2 2 2(53)a t  tVarfS, f X(T)(t-T) dt = X(t)*t (5.3)
0

For (5.1), (5.2) and (5.3), X(t) must be integrable. For the practical

cases of interest X(t) will be continuous and differentiable. We

assume as much smoothness as needed for what follows.

Lemma 5.2. Let t/ot - 0. Then

d
(S(t) - t)lt NO, 1 as t *-.

Proof: First note that

-s(S(t)- t) 2 t

E[e exp(s -. f Y(s,,t)(t-)) C)dT)
0

where

Y(s,r,t) * e2-t' s.t's(t-r)2s2
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Then

Ees cSt)- ' )/a •s 2 1 2 exp{- 2 t - t -adT

0 t

(S.4)

It is easy to show that

1 _ 1 'St for 0 < S <1 - ,( , ,t) _<. or '<~

For s fixed, one then has

ot 0 t t

As t * , the second exponent in (5.4) goest to zero, since t/ t * 0

and the normality follows.

From N(t) = KS(t) one finds easily that

At a E[N(t)] = E(uS(t)] a u~t  (5.6)

and

2 , Var[N(t)] a 22 + jig (5.7)t

.We can now prove the main theorm of this section.

Theorem 5.3. If v -as t- then

(N(t) - t)/¢ N O,.
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Proof: It follows from (4.12) that

E[e -uN~t)l , Efe-lil-eU)S(t)]

and hence

E~e -U(N(t)-R t)/ t] E~exp{.u(1.e 'U/&t)S(t) + uu9 t/C t ]

= E[exp{( Cl-e -u / t)(S(t)-St))]

-u/Ct u
•E(exp-iS t(l-e - 1- 3. (5.8)

t

From Lemma 5.2, we see that as t -.- the first expectation in (5.8)

converges to u212 and the second expectation to one. This proves the

normality.

Remark 5.4. The condition a * is not very restrictive. It holds

for a wide range of rates X(t). It holds, for example, when X(t) is

a positive constant on a finite interval, or when A(t) w t*, -- < a <

or when X(t) a exp {-yt), y > 0. It does not hold, for instance, for

ACt) a exp (8t), 0 ) 0.

Remark 5.5. When the primary stream is homogeneous Poisson we have

XCt) " X and

t

9 A f (t-)di a t/
0

and



at~ f (t-T) dT At/
0

Consequently

and

t2 2t3 /3 + pxt 2/12

which we already obtained in Section 2. Clearly,

2
2

St t 2/ t

as t *and the asymptotic normality is justified.
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6. Practical Application of the Results

When a new system comes into use, its future growth is often

uncertain at least to some degree. For military systems growth

may depend on field performance of the systems, on the perception

of real costs and on the uncertainities in future government funding.

For commercial systems, market acceptance, time dependent price as

influenced by volume and competition contribute to the uncertainty

of future growth. The primary input rate N(t) is correspondingly

unknown. Moreover the failure rate v of a perticular system com-

ponent may only emerge from experience. To avoid premature capital

outlay costs and sifrage costs, scheduled incremental acquisition

and/or production will often be appropriate. In a typical applica-

tion, planning will be adaptive and ad hoc.

The reader may question the legitimacy of the assumed Poisson

rate X~(t) for introduction of a system into service. This assumption

is made to reflect randomness in the arrival process and to assure

tractability. For a commercial system, such as a commercial aircraft

or large computer, where market place acceptance has a strong role,

the arrival process has a character similar to that of rumor propaga-

tion (cf. Dietz (1967), or Bailey (1975)) and the Poisson assumption

seems indicated. Even in military contexts where a fixed schedule

of introduction is hoped for, randomness in shipping times, training

times, etc, encourages the Poisson assumption. In these few cases

where introduction at fixed intervals occurs (cf. Example 4.S) the

formulae needed are obtained easily.
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The adaptive ad hoc planning will have only one realization

(sample path) w 0 available. At time t one will have a history for

that sample path of cumulative initiations M(wot'), 0 5 t' S t,

to date. One will also have for each part type A a history of cumula-

tive replacements NA(Woft'), 0 s t' s t. A residual number RA(t) of

spare parts on hand will be known. Suppose the failure rate V is

known. Let tH a t + AH be some future horizon time of concern. A

projected initiation rate X(t') in the period t 5 t' I tH is assumed

available. One can then establish either from (3.1) or from the

result of Theorem 5.3 a probability of spare part depletion by time

tH in the absence of new spare parts production in (t,tH). The pro-

duction quantities and the production schedule may then be established

from lot size techniques such as developed for time varying deter-

ministic demand (cf. Peterson and Silver (1979, pp. 300-341)).

If the failure rate u is not initially known, it may be estimated

at time t from cumulative failure history, as for instance, in Keilson

and Sumita (1982). In the latter paper distributed arrival times

corresponding to X(t) are incorporated.
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